Surname
First name(s)

Centre
Number

GCE A LEVEL

-白 шјес cbac
 A410U30-1
 O20-A410U30-1
 MONDAY, 19 OCTOBER 2020 - MORNING
 CHEMISTRY - A level component 3
 Chemistry in Practice

1 hour 15 minutes

ADDITIONAL MATERIALS

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	17	
2.	12	
3.	10	
4.	21	
Total	60	

In addition to this examination paper, you will need a:

- calculator;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 60 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The assessment of the quality of extended response (QER) will take place in Q.4(b)(ii).
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Answer all questions in the spaces provided.

1. This question relates to the following eight compounds.

A	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	butan-1-ol
B	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$	1-bromobutane
C	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	butanal
D	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	
E	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	butanoic acid
F	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	butan-2-ol
G	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	butylamine
H	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	

(a) Give the systematic names of compounds \mathbf{D} and \mathbf{H}.

D \qquad

H \qquad
(b) An isomer of compound \mathbf{H} shows optical isomerism.
(i) Draw diagrams to represent both optical isomers.
(ii) Give one difference between the properties of the two optical isomers.
\qquad
\qquad
(iii) Give one reaction common to both optical isomers. Give the reagent and the structural formula of the organic product formed.

Reagent

Product
(c) For each pair of compounds shown below, complete the table to describe a chemical test that can be used to distinguish between them.

Where appropriate, give the

- reagent(s) and condition(s) used
- observation(s) for the compound that reacts
- structural formula of the organic compound(s) formed in the positive test

Compounds	Reagent(s) and condition(s)	Observation(s)	Organic compound(s) formed
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$		orange to green solution	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	Tollens' reagent (alkaline solution of ammoniacal silver nitrate) warm gently in hot water bath		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$			$\begin{gathered} \mathrm{CHI}_{3} \\ \text { and } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa} \end{gathered}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$	nitric(III) acid $\left(\mathrm{HNO}_{2}\right)$ room temperature		

(d) Butanoic acid and butan-2-ol can react to form an ester.
(i) Give the essential reaction conditions.
(ii) Give the equation for the reaction. Clearly show the structure of the ester formed.
(iii) State how the ester is separated from the reaction mixture.
[1]

Siit

(a) Describe how the student could have confirmed experimentally that all of the barium ions had been precipitated in step 1.
\qquad
\qquad
(b) Write an ionic equation for the reaction of carbonate ions with hydrogen ions $\left(\mathrm{H}^{+}\right)$from the hydrochloric acid in step 3, to form carbon dioxide as one of the products.
(c) The student obtained the following results using $25.0 \mathrm{~cm}^{3}$ samples of solution \mathbf{Y}.

	Titration 1	Titration 2	Titration 3	Titration 4
Initial burette reading $/ \mathrm{cm}^{3}$	0.50	18.45	2.10	19.70
Final burette reading $/ \mathrm{cm}^{3}$	18.45	35.95	19.70	37.25
Titre $/ \mathrm{cm}^{3}$				

(i) Complete the table to show the volume of hydrochloric acid used in each titration and calculate an appropriate mean titre.
(ii) Identify the titration that has the largest percentage error in the volume of hydrochloric acid used. Give a reason for your choice.

A calculation of the percentage error is not required.
(d) The five stages in the calculation of the concentration of the barium chloride solution are set out in the statements below.
(i) Number these stages in the correct order.

	Correct order
Calculate the number of moles of HCl used in the titration of $25.0 \mathrm{~cm}^{3}$ of solution Y	
Calculate the number of moles of $\mathrm{CO}_{3}{ }^{2-}$ that reacted with $200 \mathrm{~cm}^{3}$ of solution Y	
Use the balanced equation to calculate the number of moles of unreacted $\mathrm{CO}_{3}{ }^{2-}$ in $200 \mathrm{~cm}^{3}$ of solution Y	
Calculate the concentration of the barium chloride solution in gdm	
Calculate the total number of moles of $\mathrm{CO}_{3}{ }^{2-}$ added to the $50.0 \mathrm{~cm}^{3}$ of barium chloride solution	

(ii) Calculate the concentration of the barium chloride solution in $\mathbf{g d m}^{-3}$.
(iii) Calculate the mass of barium carbonate obtained on heating the precipitate to
constant mass.

Examiner
3. This question is about the oxides and chlorides of two elements, \mathbf{X} and \mathbf{Y}, which exhibit the following properties.

Element	Properties of oxide	Properties of chloride
\mathbf{X}	White solid of melting temperature $2800^{\circ} \mathrm{C}$. It is insoluble in water but readily dissolves in dilute acid. Addition of aqueous sodium hydroxide to this solution forms a white precipitate, which is insoluble in excess aqueous sodium hydroxide.	White solid with melting temperature of $712^{\circ} \mathrm{C}$.
It is readily soluble in water.		
$\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$.		

(a) Use all the information provided to suggest the identity of element \mathbf{X}. Show your reasoning and include ionic equations to support your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(b) Use all the information provided to suggest the identity of element \mathbf{Y}. Show your reasoning and include an equation to support your answer.

\qquad

BLANK PAGE

4. (a) Outline a suitable laboratory method to investigate the rate of each of the following
reactions at constant temperature.

You may use a chosen method only once.
(i) $\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(ii) $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{2} \mathrm{ICOCH}_{3}(\mathrm{aq})+\mathrm{HI}(\mathrm{aq})$
(b) The kinetics of the reaction represented by the equation

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

can be investigated by measuring the rate at which bromine is produced using a clock reaction. The reaction mixture contains known volumes of $\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq}), \mathrm{Br}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$.

The reaction mixture also contains

- a known volume of aqueous phenol, which removes the bromine produced in the reaction

$$
3 \mathrm{Br}_{2}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3} \mathrm{OH}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{Br}^{-}(\mathrm{aq})
$$

- 2-3 drops of methyl orange solution, which is bleached colourless by free bromine

$$
\underset{\text { Br }}{2} \text { (aq) }+\underset{\text { (pink) }}{\text { methyl orange }} \longrightarrow \underset{\text { (colourless) }}{\text { bleached methyl orange }}
$$

As soon as all the phenol has been used up by the bromine produced, free bromine will appear in solution and bleach the methyl orange. The time taken for the methyl orange solution to be bleached is recorded.
(i) One group of students studied the kinetics of the bromate/bromide reaction using the clock reaction described above.

They mixed different volumes of the aqueous solutions, all at a concentration of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ and a constant temperature of 298 K .

In each experiment, the total volume was made up to $500 \mathrm{~cm}^{3}$ with deionised water. The following results were obtained.

Expt	Volume of $\mathrm{BrO}_{3}^{-}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of $\mathrm{Br}^{-}(\mathrm{aq})$ $/ \mathrm{cm}^{3}$	Volume of $\mathrm{H}^{+}\left(\mathrm{aq}^{3}\right)$ $/ \mathrm{cm}^{3}$	Volume of taken phenol $/ \mathrm{cm}^{3}$	for methyl orange to be bleached $/ \mathrm{s}$	Rate $/ \mathrm{s}^{-1}$
$\mathbf{1}$	25.0	125.0	150.0	10.0	336	
$\mathbf{2}$	25.0	125.0	300.0	10.0	84	
$\mathbf{3}$	50.0	125.0	300.0	10.0	42	
$\mathbf{4}$	25.0	62.5	300.0	10.0	168	

I. Complete the table by calculating the values of the rate in these four
experiments.
II. Deduce the order of reaction with respect to $\mathrm{BrO}_{3}^{-}(\mathrm{aq}), \mathrm{Br}^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$.

Explain how you reached your conclusions.

Order with respect to $\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})$
Explanation

Order with respect to $\mathrm{Br}^{-}(\mathrm{aq})$
Explanation

Order with respect to $\mathrm{H}^{+}(\mathrm{aq})$
Explanation
III. Write the rate equation for the overall reaction.
\qquad
IV. With reference to this rate equation, state what is meant by the overall order of a reaction.
V. Calculate the value of the rate constant, giving your answer to an appropriate number of significant figures.
VI. On the axes below, sketch the graph of rate against concentration that would be obtained when the concentrations of $\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})$ and $\mathrm{H}^{+}(\mathrm{aq})$ are changed in turn, whilst all other reactant concentrations remain unchanged.

Assume that the temperature remains constant.

(ii) In an extension to the original work, a group of students carried out an experiment to determine the activation energy of the bromate/bromide reaction.

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

They collected suitable results and plotted the graph shown below.

Outline the practical steps the students carried out to collect their results. Explain how their results were processed to plot the graph and how the graph would be used to determine the activation energy.

Additional page.

